Linearization of class C for contractions on Banach Spaces
نویسنده
چکیده
In this work we prove a C1-linearization result for contraction diffeomorphisms, near a fixed point, valid in infinite dimensional Banach spaces. As an intermediate step, we prove a specific result of existence of invariant manifolds, which can be interesting by itself and that was needed on the proof of our main theorem. Our results essentially generalize some classical results by P. Hartman in finite dimensions, and a result of X. Mora-J. Sola-Morales in the infinite dimensional case. It is shown that the result can be applied to some abstract systems of semilinear damped wave equations.
منابع مشابه
Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کامل$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...
متن کاملKnown Results and Open Problems on C1 linearization in Banach Spaces
The purpose of this paper is to review the results obtained by the authors on linearization of dynamical systems in infinite dimensional Banach spaces, especially in the C case, and also to present some open problems that we believe that are still important for the understanding of the theory. The purpose of the present paper is to make a review of results obtained by the authors in the field o...
متن کاملFixed points for Banach and Kannan contractions in modular spaces with a graph
In this paper, we discuss the existence and uniqueness of xed points for Banach and Kannancontractions dened on modular spaces endowed with a graph. We do not impose the Δ2-conditionor the Fatou property on the modular spaces to give generalizations of some recent results. Thegiven results play as a modular version of metric xed point results.
متن کاملA Class of Hereditarily $ell_p(c_0)$ Banach spaces
We extend the class of Banach sequence spaces constructed by Ledari, as presented in ''A class of hereditarily $ell_1$ Banach spaces without Schur property'' and obtain a new class of hereditarily $ell_p(c_0)$ Banach spaces for $1leq p<infty$. Some other properties of this spaces are studied.
متن کامل